RISE OF THE ROBOTS

By MSW Add a Comment 11 Min Read

arvl

ARV-AL XM1219 Armed Robotic Vehicle

The falling size and cost of electronics has made it possible to decrease the number of people needed to operate major weapons systems or, in some instances, eliminated the need for human operators altogether. Maintaining the engines aboard a ship used to require dozens of sailors to work for extended periods in noisy, grimy, cramped quarters. The new DD(X) destroyer will have an engine room controlled entirely by remote sensors and cameras. Or, to take another example, consider the evolution of the long-range bomber from the B-29, which had a crew of eleven, to the B-2, which can hit many more targets but has a crew of just two—and they spend much of their time supervising the autopilot functions.

The greatest advances in robotics have been made in unmanned aerial vehicles (UAVs), with the U.S. in the lead, Israel following close behind, and at least forty other countries trying to catch up. By the time the Iraq War began in 2003, the U.S. fielded six major UAVs: the Air Force’s Predator and Global Hawk, the Army’s Hunter and Shadow, and the Marines’ Pioneer and Dragon Eye. These ranged in size from the 27,000-pound Global Hawk (comparable to a Learjet) to the five-pound Dragon Eye (more like a model airplane). What they had in common was that they were all designed as surveillance systems. But in a pattern that echoes the history of manned flight, UAVs such as the Predator were soon put to work attacking enemy positions.

Soon to be deployed are drones built especially for combat—Boeing’s X-45 and Northrop Grumman’s X-47. In one writer’s fanciful description, the former is “[f]lat as a pancake, with jagged 34-foot batwings, no tail and a triangular, bulbous nose” that give it the appearance of “a set piece from the television program Battlestar Galactica,” while the latter is a “a sleek kite-shaped craft with internal weapons bays for stealth and curved air intakes like the gills of a stingray.” Both are designed to be almost invisible to radar and to perform especially dangerous missions like suppressing enemy air defenses. The major difference is that the X-45 is supposed to take off from land like the F-15, while the X-47 is to operate off aircraft carriers like the F-18. Also in development is the Unmanned Combat Armed Rotorcraft, which is designed to perform the functions of an attack helicopter like the Apache. An unmanned helicopter, known as Fire Scout, is already being bought by the U.S. Navy and Marine Corps. Unlike the Predator, most of these new UAVs do not require constant control by a human operator; newer UAVs can be programmed to fly themselves and even drop munitions without direct human intervention.

Further into the future may be projects such as a nuclear-powered UAV that could fly at seventy thousand feet and stay on station for months or even years at a time; a UAV tender that could serve as a mother ship for launching and recovering smaller UAVs; unmanned aerial tankers that could refuel other UAVs in flight; and vertical-takeoff UAV cargo-carriers that could supply troops in a combat zone. Many of these UAVs could utilize smart munitions with their own target-recognition systems, thus introducing another layer of robotics into the process. An existing example is the Low-Cost Autonomous Attack System, a one-hundred-pound bomb with fins and a small turbojet engine that allow it to hover over an area for up to thirty minutes, using a laser-radar sensor to search for high-priority targets based on programmed algorithms. Once it picks out a target, it can configure its multimode warhead into the most appropriate form—fragmentation explosives for unprotected soldiers, an armor-piercing projectile for tanks—prior to impact.

The most revolutionary UAVs are the smallest. The Defense Advanced Research Projects Agency (DARPA) is working on aerial vehicles the size of an insect or a hummingbird that could hover undetected and perch on a telephone pole or a window ledge. Some models have no wings at all; others use flapping, bird-style wings. They are designed to be cheap enough that they could saturate a battlefield with sensors.

Unmanned ground vehicles aren’t as advanced as UAVs, but they are playing a growing role as well. In Iraq and Afghanistan, the U.S. Army and Marine Corps have used robots with names like PackBot, Matilda, Andros, and Swords to search tunnels, caves, and buildings for enemy fighters and explosives. “Some are as big as a backhoe. Others can be attached to a backpack frame and carried by a soldier,” writes the trade industry publication Defense News. “They move on treads or wheels, climb over obstacles with the aid of flippers, mount stairs, peep through windows and peer into caves with cameras and infrared sensors, sniff for chemical agents, and even operate a small ground-penetrating radar.”

As this description indicates, ground-based robots, like their aerial counterparts, are still used mainly for reconnaissance. But weapons are beginning to be mounted on them, too. The Talon, a two-foot-six-inch robot that looks like a miniature tank and was designed for bomb disposal, was sent to Iraq equipped with grenade and rocket launchers as well as a .50 caliber machine gun. It is controlled remotely by a soldier using a video screen and joystick.

Developing more sophisticated unmanned ground vehicles will be tougher than developing better UAVs because there are so many more obstacles that can impede movement on the ground. But progress is rapidly being made. In 2004, DARPA sponsored a race in the Mojave Desert to see if an autonomous robotic vehicle could complete a 132-mile course. The farthest any competitor got was seven and a half miles, but the following year four vehicles finished the entire course, with the winner (a souped-up Volkswagen Touareg) claiming the $2 million prize. Buoyed by these results, the Pentagon is pushing ahead with plans for new ground robots such as the MULE (Multifunction Logistics and Equipment Vehicle), a two-and-a-half-ton truck that could carry supplies into battle or wounded soldiers out of it; the Armed Robotic Vehicle, a five-ton minitank that could be equipped with missiles or a 30 mm chain gun; and the Soldier Unmanned Ground Vehicle, a thirty-pound, man-portable scout that comes equipped with weapons and sensors. These are all integral elements of the Army’s Future Combat System.

Scientists are also trying to create a self-powered robotic suit—an exoskeleton—that could enable soldiers to carry far heavier loads, move much faster, and conceivably even leap short buildings in a single bound. A prototype developed at the University of California, Berkeley, allows a soldier to carry 180 pounds as if it were less than five pounds.

The U.S. Navy is exploring robotic technology for a variety of its own missions. In addition to carrier-based UAVs (both fixed-wing and rotary), the navy is developing Unmanned Surface Vehicles and Unmanned Undersea Vehicles. Most of these drones would swim, but some might crawl along the ocean floor like crabs. They could perform such difficult missions as antisubmarine warfare, mine clearance, undersea mapping, and surveillance in coastal waters.

All drones, whether operating on soil, sea, or sky, offer major advantages over traditional manned vehicles. They can be deployed for longer periods because robots don’t need to eat or sleep; they can undertake maneuvers that might put too much stress on the human frame; they can be made much smaller and cheaper because they don’t need all sorts of expensive redundancies and life-support systems (no oxygen tanks, no ejection seats); and they can be much more readily sent on high-risk missions because, should anything go wrong, nobody has to worry about notifying the next of kin. These advantages have persuaded Congress to ratchet up spending on unmanned programs. Lawmakers have mandated that one-third of all U.S. deep strike aircraft be unmanned by 2010 and one-third of all ground combat vehicles by 2015.

There are two chief limitations on the use of robots at the moment. First, computers and sensors are not yet smart enough to deliver anything close to the “situational awareness” of a human being. Second, a shortage of bandwidth limits the number of drones that can be remotely controlled at any one time. Both problems will become less acute with improvements in computer and communications technology but, notwithstanding the Terminator movies, there is little cause to think that androids will take over the battlefield of the future. It is doubtful that computers will ever be smart enough to do all of the fighting. But machines increasingly will be called upon to perform work that is dull, dirty, or dangerous.

By MSW
Forschungsmitarbeiter Mitch Williamson is a technical writer with an interest in military and naval affairs. He has published articles in Cross & Cockade International and Wartime magazines. He was research associate for the Bio-history Cross in the Sky, a book about Charles ‘Moth’ Eaton’s career, in collaboration with the flier’s son, Dr Charles S. Eaton. He also assisted in picture research for John Burton’s Fortnight of Infamy. Mitch is now publishing on the WWW various specialist websites combined with custom website design work. He enjoys working and supporting his local C3 Church. “Curate and Compile“
Leave a comment

Leave a Reply Cancel reply

Exit mobile version