Dogfights Redux





World War I.

By the beginning of World War I in August, 1914, many military strategists had already predicted the possibility of combat between aircraft. At the time, military aviation on all sides was limited to a few hundred rudimentary aircraft that were expected to perform reconnaissance missions, artillery spotting, and courier duties. The low performance of available aircraft at the time made the carrying of effective weapons initially pointless, because their added weight made the aircraft incapable of climbing to altitude or of overtaking any opposing aircraft. Early in the war, there existed a camaraderie of the air. Pilots treated each other with a restrained civility, often saluting or waving at enemy pilots in passing. Piloting an aircraft was akin to membership in an elite gentlemen’s club.

As the value of aerial observation became apparent to ground force commanders, it soon became necessary to disrupt the enemy’s reconnaissance activity in order to wage successful land and sea campaigns. In short order, both pilots and observers began attacking enemy aircraft with rifles, revolvers, semiautomatic pistols, and steel-dart flechettes in attempts to down opposing fliers. As the possibility of being shot out of the sky while on a mission became a real threat, aggressive pilots and resourceful ground crews soon initiated rapid development in both aircraft and aircraft missions in World War I. The three technological developments most noteworthy in the early intensification of aerial combat include the design and production of more powerful engines and robust machines; the installation of lightweight machine guns, synchronized to fire through the propeller arc of single-engine aircraft; and long production runs of mass-produced, standardized aircraft that made possible the institution of formation tactics. As soon as more powerful machines were available, flexible machine-gun mounts were fitted to either the sides or the upper wing surface of the aircraft. This positioning was necessary because the sides, rear, or above the propeller arc were the only safe directions in which to shoot without possibly destroying the front-mounted tractor drive propeller. These early aircraft could not be pointed so both pilot and aircraft were in alignment with the targeted enemy, making for dangerous flying circumstances during an aerial battle. After several experimental attempts, the forward-firing synchronized machine gun was designed and fitted to the cowl of high-performance single-seat scout aircraft. The mission of these aircraft was primarily offensive, and they were employed to destroy enemy reconnaissance and bomber aircraft. These were the first true fighter aircraft. In an effort to protect airplanes on reconnaissance and bombing missions, groups of fighter planes began flying as escorts. Flying out to meet the enemy’s reconnaissance, bombers, and escorts was called interception. When fighter escort aircraft encountered fighter interceptors, an aerial melee, which became known as the dogfight, resulted. The sole purpose of the dogfight was to destroy as many enemy aircraft as possible before they could return the favor.

World War II.

World War II saw the most prolific application of interceptor and escort strategies. Air-to-air combat and superior dogfighting aircraft swung the balance of power and ultimate air supremacy toward the Allied forces. Aerial duels during the Battle of Britain (1940), the Allied daylight bombing raids on Germany (1942-1945), the Pacific Island campaign (1942-1945), and operations on the Russian front (1941-1944) established the doctrine of air supremacy as the key to victory in modern conventional warfare.

Fighter Planes.

Some of the most recognizable and renowned aircraft in the history of aviation have been fighter planes. Many well-known aircraft were designed specifically for the air-to-air mission. World War I fighters included the Fokker Dr-I triplane, the Sopwith Camel, the Spad XIII, and the Albatros D-III. World War II fighters included the Spitfire, the Hurricane, the P-51 Mustang, the P-38 Lightning, the Corsair, the Mitsubishi Zero, the Messerschmitt Bf-109, and the Focke- Wulf Fw 190. MiG-15 and F-86 Sabre jet fighters were used in the Korean War. MiG-21 and F-4 fighters were used in the Vietnam War. MiG-23, F-15, F-16, F- 18, and Mirage fighters were used in wars in the Middle East during the last half of the twentieth century.


The duel between fighter aircraft to gain control of the skies above a battle theater has become a necessary command strategy. Control of the skies means unfettered access for one’s own reconnaissance and bombers to the exclusion of the enemy’s. The basic rules of air-to-air combat established during World War I have not changed since. Air-to-air combat, from its very inception, remains exclusively individualist. Early air warfare tactics were essentially individual in nature, evolved by pilots to reflect their own experiences and personalities and altered to suit the circumstances and the aircraft and its armament. Despite advances in technology, this warrior tradition remains in place.

During World War I, pilots learned that the key to success and survival in a dogfight was to gain surprise and get off the first shot. A protracted aerial dogfight, in which the advantage hinges on pilot skill, higher maneuverability, tighter turning radius, munitions, and greater speed, is not the optimum scenario. Drawn-out dogfights typically end in stalemate or random losses due to some unforeseen circumstance. The primary rule of all air-to-air combat is to take the enemy by surprise. Nearly all aerial kills are the result of the surprise attack, in which the attacking pilot obtains a favorable position, usually high and to the rear, and fires the initial attack. The victim usually never sees the attacker. The average aircraft-to-aircraft aerial duel takes less than ninety seconds.

An effective fighter pilot must not only be skilled but also must be able to apply those skills quickly under the intensity and pressure of a life-and-death struggle that takes place on a three-dimensional battlefield at incredible speeds. A dogfight is not a planned mission. Once the duel begins, all operational order is gone. One of the most common tactics in dogfighting is to force the enemy into elaborate maneuvers that deplete the enemy craft’s fuel supply and force the enemy to break off the engagement, at which point the enemy becomes exposed and vulnerable to follow-up attacks. Interceptor pilots defending air space have an advantage in that they require less fuel. Defending interceptors can linger in their air space longer, and, because they are closer to their bases, they can land, refuel, rearm, and return to battle if necessary.

In modern warfare, weaponry and personnel are likely to be somewhat evenly matched. It has been known since World War I that excellence in fighter aircraft design is more important than greater speed and that maneuverability and weapons technology are the keys to successful fighter design. Often, however, the outcome of air-to-air combat is influenced by factors other than aircraft performance and firepower, such as the pilot’s skill and morale, the tactical situation or mission, the weather, the balance of forces in the air, and intelligence data. Yet, to win a dogfight, the pilot must be equipped with an aircraft capable of keeping up with the enemy and must be trained to use the aircraft to its maximum potential. Superior aircraft coupled with inferior pilots is no match for skilled pilots in similar aircraft. Historically, about 5 percent of combat pilots account for more than 50 percent of all downed enemy aircraft during a conflict. Putting as many skilled pilots as possible into a battle theater is the most efficient way to gain air superiority.

From the beginning of air-to-air combat, spotting the enemy first, acquiring position, and firing the first shot have been the keys to success and survival. Although pilot skill remains an important factor, modern dogfighting is a matter of teamwork and applied technology. With the advent and application of long-range detection systems, weapons, and communications, pilots can detect, coordinate, and attack opposing aircraft from greater distances. In modern air warfare, the side with the superior detection systems usually gets the superior position and manages to fire the first shot. Early detection also allows for quicker adaptation to fluid battlefield conditions. Modern improvements in aircraft armament and sighting allow pilots to reach out and touch the enemy at greater distances and with a greater measure of success. A modern 30-millimeter cannon is highly accurate to 800 meters, compared with the 100 meters of an 8-millimeter machine gun of World War I. Modern air-to-air missiles have kill ranges of up to 200 kilometers and are highly reliable at ranges of 10 to 50 kilometers. Because of these long-range munitions, most modern dogfights often take place beyond the visual range of the combatants.

Bibliography Cooksley, P. G. Air Warfare. London: Arms and Armour Press, 1997. A well-illustrated basic book covering weapons, bases, personalities, tactics, and events in the history of air warfare, with a bias toward British aviation history. Gunston, B., et al. Fighter Missions. New York: Orion Books, 1988. A beautifully illustrated and informative book outlining the modern doctrines of air combat. Guttman, J. Fighting First: Fighter Aircraft Combat Debuts from 1914 to 1944. London: Cassell, 2000. A volume covering the important aircraft and fliers from World War I through World War II and recounting the most famous air battles of both wars. Park, E. Fighters: The World’s Great Aces and Their Planes. Charlottesville, Va.: Thomasson-Grant, 1990. A beautifully illustrated, large-format book that outlines the exploits and histories of the most famous combat aircraft and renowned combat pilots.